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ABSTRACT

In neuroanatomical studies, the specimens are generally cut
into serial sections that are processed to reveal the elements of
interest. The third dimension lost during sectioning can be re-
covered by reconstructing three-dimensional graphical mod-
els of the studied structures. To reach statistical signi cance
and to compare results from distinct experiments, data from
different models must be combined into common represen-
tations. Due to biological and experimental variability, this
requires a non-linear spatial normalisation step. In this paper,
an algorithm is presented to normalise and map data into av-
erage models. The usefulness of the approach for elucidating
spatial organisations in the nervous system is illustrated on rat
neuroanatomical data.

Index Terms— Neuroanatomy, 3D reconstruction, mod-
elling, spatial organisation, rat nervous system.

1. INTRODUCTION

The activity of the nervous system is ensured by neuronal
populations that are organised in three dimensions. Three-
dimensional (3D) representations of neuroanatomical organ-
isations are thus essential to the study and understanding of
brain function. A number of techniques, such as confocal mi-
croscopy and magnetic resonancemicroscopy, are available to
image brain structures of small laboratory animals. However,
conventional histological microscopy remains the methodol-
ogy of choice to study the organisation of neuronal struc-
tures with a tissular resolution over wide observation elds.
Hence, neuroanatomical studies typically consist in revealing
and mapping speci c neuronal markers on two-dimensional
(2D) serial sections. The third dimension lost by sectioning
the specimen can be recovered using 3D reconstruction from
stacked serial sections. This generates graphical models of
the studied structures that can be interactively explored and
quantitatively analysed.

Each 3D model is generated from data collected during
a single experiment on a single animal. The variability is
not accounted for in such an individual model. Besides, the
number of structures that can be simultaneously revealed on a

given animal is limited in practice. Studying a complex neu-
roanatomical ensemble therefore encompasses a series of dis-
tinct experiments. This yields a collection of individual mod-
els, providing each an incomplete view of the studied organ-
isation. Generating statistically representative and anatomi-
cally comprehensive 3D models requires that data from in-
dividual models be combined. Large morphological uctu-
ations are observed in practice among 3D models, if only
because of the physical and chemical alterations due to his-
tological processing. Hence, data integration from different
models should incorporate a spatial normalisation step.

Spatial normalisation of 3D images has received consid-
erable attention, in particular in non-invasive brain imaging.
Surprinsingly, very few studies have addressed the problem
of normalising data from serial section reconstructed mod-
els. Funka-Lea and Schwaber [4] proposed an interactive
method for locating and warping data from a 2D section
onto a 3D atlas. Recently, methods have been proposed to
combine 3D models normalised for position, orientation, and
scale [3, 5, 8]. These af ne methods do not compensate for
3D shape uctuations. In [2], we have introduced a method
based on coarse model alignment and polynomial warping.
This method achieves a non-linear normalisation, which is
mandatory to rectify the morphological uctuations due to
biological and experimental variability. However, it may fail
to correctly normalise models in some situations because of
the absence of a true registration step.

This paper presents an improved method to combine data
from individual 3D models built from serial sections. Our
original method has been improved by incorporating a true
surface registration and averaging algorithm [6]. The method
relies upon the existence of reference structures, i.e., struc-
tures whose instances are homologous across models. The
morphological variations of the references around their aver-
ages are assumed representative of the deformations affecting
the whole specimen. Under this assumption, normalisation
is achieved by registering and averaging the references, mod-
elling the deformations around their averages, and warping
the other structures by propagating these deformations. The
method is detailed in Section 2. Sample results obtained on
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Fig. 1. 3D reconstruction and modelling of the SPN. (A) Sam-
ple coronal sections. (B) Models of the whole SPN popula-
tion. (C) Models of the subpopulation innervating the bladder.
(D) Models of the subpopulation innervating the penis. Grey
matter boundary and central canal were omitted for clarity.

rat neuroanatomical data are reported and brie y discussed in
Section 3. Section 4 concludes the paper.

2. MATERIAL AND METHODS

2.1. Neuroanatomical data

The data were collected in a study of the spatial organisa-
tion of the rat sacral parasympathetic nucleus (SPN) [2]. The
SPN, located in the lumbo-sacral segments of the spinal cord,
contains neuronal populations that control the re ex motric-
ity of uro-genital organs. The study aimed at determining
whether SPN populations controlling different organs are spa-
tially segregated or not. To this end, SPN cells were labelled
using retrograde neuronal tracers. In a rst group of three rats
(SPN group), samples of the whole SPN population were la-
belled. In three other rats (BLD group), only cells innervating
the dome of the bladder were labelled. In yet three other rats
(CCV group), only cells innervating the corpus cavernosum
of the penis were labelled. In each case, the lumbo-sacral
spinal cord was dissected out and serially cut into coronal sec-
tions (Fig. 1A). Care was taken to process homologous spinal
cord segments in all nine animals.

2.2. Three-dimensional reconstruction and modelling

Three-dimensional reconstruction was performed using the
Free-D software [1]. On each slice image, the contours of
the spinal cord, of the grey/white matter boundary and of
the central canal were delineated and the labelled cells were
pointed. Following image registration, anatomical envelopes
were reconstructed as quadrangular meshes from contour
stacks using contour resampling, matching, and interpolation
[6]. Any surface S was thus divided into quadrangles, its
vertices being indexed on a W × H grid: S = {p(u, v) =

[x(u, v), y(u, v), z(u, v)]t : 0 ≤ u < W, 0 ≤ v < H}, H
being the number of contours and W the number of vertices
per contour. W and H were adjusted to keep reconstruction
error, measured using the distance between original contour
stacks and reconstructed surfaces, below a threshold. Due to
shape differences, different mesh sizes were thus selected for
the spinal cord (165 × 110), the grey/white matter boundary
(175× 110) and the central canal (10× 110). For each struc-
ture, the same size was used in all animals. Figures 1B–D
display the nine reconstructed models.

2.3. Model registration and surface averaging

To compute the average reference structures, the individual
models must be registered. In most experimental conditions,
the structures of interest are not the anatomical references and
their spatial organisation is unknown. Consequently, model
registration should be driven by references only while other
structures should passively follow the transformations. In the
present study, the spinal cord envelope, the grey/white matter
boundary, and the central canal are the reference structures.

Models are rst centered at the origin of the coordinate
frame and coarsely oriented by aligning the principal axes of
their references with those of the coordinate frame. If sev-
eral reference structures are present in each model, they are
processed as a single, multi-parts object. The translation and
rotation are computed using references only, but are applied
to non-reference model components as well.

The principal axes transformation independently aligns
each model with the main coordinate frame. It does not guar-
antee the minimisation of residual distances among all refer-
ences. Therefore, this initial, coarse alignment is re ned us-
ing a multiple surface registration algorithm [6]. For the sake
of completeness, this algorithm is brie y summarised below.

The algorithm iteratively registers each model onto the av-
erage of the other ones. Let N denote the number of individ-
ual models, K the number of references in each model, Mi

the ith model and S(k)
i the kth reference in Mi. During an

iteration, each model Mi is considered in turn. First, a par-
tial average model M̄i is built with the remaining ones. M̄i

contains K average references S̄(k)
i de ned by:

S̄(k)
i (u, v) =

1
N − 1

∑

j �=i

S(k)
j (u, v) (1)

Each S(k)
i (1 ≤ k ≤ K) is then reparameterised to ensure that

vertex numbering is anatomically coherent with S̄(k)
i . This

matching consists in minimising the sum of squared vertex-
to-vertex distances between S(k)

i and S̄(k)
i over all u-index

circular permutations (v-index correspondence results from
contour stacking). Model Mi is then registered on M̄i by ap-
plying rotation R̂ and translation t̂ that minimise the quantity:

K∑

k=1

W−1∑

u=0

H−1∑

v=0

‖RS(k)
i (u, v) + t− S̄(k)

i (u, v)‖2 (2)
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Fig. 2. Evolution of the criterion during normalisation. The
criterion was computed after principal axes alignment (PAT),
model registration (REG), and warping (PW). In the latter
case, the number indicates the degree D of the polynomials.

R̂ and t̂ are computed using a singular value decomposition
approach [7]. Note that a single rotation and translation are
determined and applied to all the components of Mi.

The algorithm generally convergeswithin a few iterations.
The nal, resulting average model M̄ is computed by averag-
ing the references over the N individual, registered models.

At the end of the surface reconstruction process (Sect. 2.2),
the vertices of S(k)

2 , . . . ,S(k)
N are generally not in anatomical

correspondence. An initialisation step is thus required to en-
sure the anatomical validity of the model M̄1 computed in the
rst iteration. To this end, S(k)

3 to S(k)
N are reparameterised to

match S(k)
2 before entering the algorithm main loop.

2.4. Individual models warping and merging

Model warping consists in considering each individual model
in turn and in mapping its non-reference components into the
average model using non-linear deformations. To this end,
a parametric deformation model is adopted and tted to the
observed displacements that map the reference structures onto
their averages. The deformation model can then be applied to
evaluate the deformation at any position in the 3D space.

The discrete deformation eld d(k)
i that maps any refer-

ence S(k)
i of model Mi onto its average in M̄ is given by:

d(k)
i (u, v) = S̄(k)(u, v)− S(k)

i (u, v) (3)

Fitting a parametric deformation model to these data can be
achieved using either interpolation or approximation. Sur-

faces reconstructed from physical serial sections are affected
by cumulated errors from histological processing, registra-
tion, and segmentation. The sample deformation elds be-
tween references and their averages thus contain large num-
bers of noisy data. In this context, deformations should be
approximated rather than interpolated.

A multivariate polynomial approximation scheme is
adopted here. Any position p is mapped to p′ = p + δ(p),
where δ = (δX , δY , δZ) is a vector of three trivariate polyno-
mials of arbitrary degree D. For example:

δX(x, y, z) =
∑

a+b+c≤D

αabc xaybzc (4)

The polynomial coef cients {αabc} are determined using
least-squares estimation, i.e., by minimising the quantity:

K∑

k=1

W−1∑

u=0

H−1∑

v=0

‖δ(S(k)
i (u, v))− d(k)(u, v)‖2 (5)

To this end, an orthogonal polynomial decomposition is used.
Our implementation is based on a generalisation of Horner’s
scheme to multivariate polynomials. It can represent polyno-
mials with any number of variables up to any degree. This
facilitates investigations in order to nd the best polynomial
order to model morphological variations.

2.5. Quantitative evaluation of spatial normalisation

The polynomial deformation order D is the main free parame-
ter of our spatial normalisation method. Setting D by visually
examining normalised models is not only subjective, but also
often impossible because of the dif culty of comparing 3D
graphical representations. Therefore, an objective criterion is
introduced to quantitatively evaluate normalisation results.

The normalisation criterion is de ned in the context of re-
peated experiments. It quanti es the spatial coherence of the
n point sets that result from labelling a given neuronal popu-
lation on n animals. It is assumed that, since the point sets are
samples of the same population, they should be brought into
correspondence by normalisation. For each cell of each set,
the distance to the nearest cell among the n − 1 other sets is
computed. The criterion is the average of all these distances.
Low values indicate good spatial coherence. The optimal D
value is thus found by minimising the normalisation criterion.

3. RESULTS AND DISCUSSION

Following alignment, the nine individual models were regis-
tered (10 iterations) and warped using polynomial deforma-
tions of degree D varying from 1 to 10. Within each exper-
imental group, the normalisation criterion was computed at
each step of the process (Fig. 2). The minimum was reached
for degree 4 within the CCV group and degree 7 for the SPN
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Fig. 3. The three sets of cells (represented with different grey
levels) in the SPN group after alignment (PAT), registration
(REG), and warping of degree 7 (PW7). Views are (A) sagit-
tal and (B) coronal. Scale bar: 250 μm.

and BLD groups. In both SPN and CCV groups, the evolu-
tion of the criterion presented a clear minimum. The value
at the minimum was remarkably similar in the three groups.
This suggests that an absolute minimum has probably been
reached. The pattern within the BLD group was more or less
at. Within this group, it appears that the three point sets were

already in good correspondence after the initial alignment.
The evolution of the spatial relationships between the

three point sets of the SPN group is displayed Figure 3. The
large misregistration that subsists after initial alignment is
reduced by the global model registration step. This illustrates
the improvment gained by adding the registration step, which
was absent in our rst normalisation method [2]. However, a
good correspondence is only obtained by applying the opti-
mal polynomial warping (degree 7). This con rms that linear
or af ne correction methods are not suf cient to rectify the
morphological variations that affect our models.

The superposition of the normalised cell populations of
the BLD and CCV groups is shown within the average spinal
cord envelope in Figure 4. In the coronal plane, the two sub-
populations are in good correspondence. Conversely, they oc-
cupy different territories in the parasagittal plane. Cells inner-
vating the penis are located in the rostral end of the lumbo-
sacral spinal cord, while cells innervating the bladder are lo-
cated at the caudal end. Lastly, the segregation is only partial
since the two subpopulations overlap in the middle part of the
considered spinal cord region. These results con rm that the
BLD and the CCV subpopulations of the SPN are partially
segregated along the rostro-caudal direction [2].

4. CONCLUSION

The proposed algorithm allows the spatial normalisation of
3D neuroanatomicalmodels built from serial sections. It takes
into account the non-linearmorphological variations of the in-
dividual models, a prerequisite for integrating data from dif-
ferent individuals and experiments into common, average rep-
resentations. Since it smoothes out individual variability, this

A B

Fig. 4. Superposition of the three BLD (spheres) and the three
CCV (diamonds) subpopulations following spatial normalisa-
tion. Views are (A) sagittal; (B) coronal. Scale bar: 250 μm.

methodology should help to decipher the complex architec-
tural rules that govern the organisation of the nervous system.
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